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Chapter 1

INTRODUCTION

The electromagnetic coupling between a conducting body and an
aperture is an important problem. One of ¢the studies is ¢to
investigate the response of protected objects behind an
aperture-perforated metallic screen. The power transmitted through
the aperture from a source on a nearby object which is behind the
screen 1is also of interest. Situations of this nature arise in a
number of applications, e.g., microwave leakase <through cracks in
shield walls of electronic equipment and electromagnetic penetration
into vehicles, aircraft, and ships. This penetration is through

windows or seams of doors to cables or other metallic objects.

In the past, the problem of electromagnetic coupling to an
infinitely 1long wire through an electrically small aperture [1] - [31
or through a nartov slot [4] has been studied. The problem of a nariow
slot passing by a finite~length wire without loads (5] or with loads [6]

has also been investigated.

In this work, we consider more general problems for which an
aperture in an infinite conducting plane is hacked by a conducting
body. The aperture and the conducting body are of arbitrary size and
shape. A noment method solution is developed for the equivalent

masmetic current in the aperture and the electric current on the

ASAN RN § 's"\:;'."\‘;'.‘;\"\ -.:','s';-J;'.:;\"s‘%"\ \"\;4.* \'(;&w
A o4 « d . 3
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conducting body. The solution is then applied to problems for which
the conducting body is a wire of finite length (with or without loads)

or of infinite length. The current distributions in the aperture and

on the wire can be used to calculate the power transmitted through the

aperture and other responses of the wire.

In Chapter 2, the general problem of a conducting body behind an
aperture is considered. The equivalence principle [7, Sec. 3-5],
boundary conditions, and moment method [8] are utilized to obtain a
pair of matrix equations. These equations are used to solve for the

current distributions in the aperture and on the conducting body.

In Chapter 3, we specialize the problem to an unloaded wire of
finite length behind an aperture of arbitrary size and shape.
Triangular patching is used to model the aperture. Pulse functions
are placed on the wire. Matrices in the pair of matrix equations
developed in Chapter 2 are evaluated. Numerical results are presented

and compared with those in [S].

In Chapter 4, the wire considered in Chapter % is extended to an
infinitely 1long wire. The expansion functions and matrices developed
in Chapter 3 are modified to include the effect of the infinite length

of the wire. DlNumerical zresults agree very well with the available

data in [1] - [4].

In Chapter 5, the problem is generalized to that of an
arbitrarily loaded wire behind an aperture. We modify the moment

method solution developed in Chapter 4 to include the reflection

effect from the 1loads of the wire. Ye then evaluate the power




transmitted through the aperture. The solution for a wire with
matched 1loads is used to obtain an equivalent circuit of the aperture
for the transmission 1line mode on an arbitrarily 1loaded wire.

Numerical results are presented and compared with those in [4] and

[6].

Yle summarize and conclude this study in Chapter 6.
Recommendations for further work are given. Appendix A presents
evaluations of some surface integrals used in Chapter 3. Fields
due to outward traveling TEM (transverse electromagnetic) currents are
derived in Appendix R. 1In Appendix C, we derive some integral
formulations used in Chapter 4. An equivalent circuit of an aperture

for the transmission line mode on a loaded wire is derived in Appendix

D.

Finures and tahles are at the end of each chapter and apvoendix.
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Chapter 2
FORMULATION OF THE GENFRAL PROBLEM
2.1. Problem Specification
Te general configuration is given in Fig. 2.1. An

aperture-perforated infinite conducting plane of =zero thickness

separates regions a and b. The size and shane of the aperture are

arbitrary. In 7region a (y < 0), there are impressed sources
ia _ia
(g_ )M ). In region b (y > 0), there are an arbitrarily shaped and

sized conducting body ani impressed sources (Eih'ﬂ?b), The material

in regions a and b is loss=-free and homogeneous with permeabilities
(u ,ub) and permittivities (ea,eb). The aperture and the conducting
a

body are labeled A and B, respectively.

In this chapter, a moment method solution is developed to obtain

the equivalent magnetic current in the aperture and the electric

current on the conducting body.
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2.2. Formula Derivation

Ve use the equivalence principle [7, sec. 3.5] to divide the
problem into two parts, as shown in Fig. 2.2. The fields in region a
remain unchanged if the aperture is closed by a conducting surface and
an equivalent magnetic surface current sheet Ef is placed over the

aperture region where
=nx EA over A (2-1)

n is the unit vector normal to the conducting plane and points toward
region b. §; is the electric field over the aperture in region a.
This equivalence is shown in Fig. 2.2(a). Similarly, the fields in
region b remain unchanged if the aperture is closed by a conducting
surface and a magnetic current sheet EP is placed over the aperture

region where
h
= -nx E’A over A (2‘2)

E: is the electric field over A in region b. In addition, an electric
current J is induced on the conducting body by Mb' Jib , and nib,
This equivalence is shown in Fig. 2.2(b). Therefore, the electric and

magnetic fields in region a are

B2 . Ef(g?) + B ' (2-3)

Ea - Ea(za) . ﬂia (2-4)
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Here, (E*(M%), H%(M")) is the field from ¥°, ana (E , H ) is the
short-circuit field (field existing in the presence of the complete

ia i
conducting plane) fron (J°°, W' ). Similarly, the fields in region b

are

b b, b b i

B =g() + B + B (2-5)
b .

B =) » 1) 1 >-6)

b, b, b, b b b

Here, (E"(M"), H (M)) is the field from M, (E (J), gb(g)) is the
ib . ib

field from J, and (B, #'®) is the short-circuit field from (3,

ib
!_ ). Note that all fields are obtained with the aperture shorted.

We next appply boundary conditions to this problem. They are:
(%) the tangential elentric field is continuous across the aperture A,
(2) the tangential magnetic field is continuous across A, and (3) the
tangential electric field vanishes on the surface of the conducting

body B. The first condition implies that n x g2 =nx Eb in (2-1) and

= =
b
(2-2). Therefore, E? = <M. From now on we use ¥ to represent !? and
b
=M . The other two conditions imply that
a b
- 2-
Et ﬂt on A (2-7)
b
Et -0 on B (2-8)

where t denotes the component tangent to A or B. Substitution of

(2-4) - (2-6) into (2-7) and (2-8) gives
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B, jtn
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LIy
BN -H3(M) - HP(M) + WP(3) = % - u® on 2-
HAW) - Ko + 10D = H® - 1 on (2-9)
r
o
hS b b ib
0 E(K) - E =R B -10
: B2 - (D) = B on (2-10)
Y
:3% Here, the linearity of the operators is used to replace E:(-ﬂ) by
Xy “HP(¥) and E°(-M) by -E(%). Fquations (2-9) and (2-10) are the
ﬁe. -t - -t - -t -
g2 equations to solve for M and J.
o) .
rd! We next use the moment method [81 to reduce (2-9) and (2-10) to
;%ﬁ matrix equations. For this, we define expansion functions {M :
R -n
. n-1,2,...,NA} over A and {gn; n=1,2,...,NB} over B to approximate il
SAEN
2; and J, respectively. That is,
<!
2N
e
'ﬁ:ﬁ‘
NA
M=y v i 2-11
e n= v b, (21
" n=1
PN
V‘.‘
R
” NB
+ a4 J = 1 J -1
w}t J 2 n 2 (2-12)
X 2 n=1
Res
R, % «
__: We define testing functions fﬂ 3 m-1,2,...,NA} over A and {3 3
- “m
5'4 m-1,2,...,NB] over B and a symmetric product
l‘
2%
=2 <F. , F> F.F_ dS (2-13)
;’M » __2 S J _1._2 . -
S
oy
A
PN
32 where S denotes surface A or B. YNow, substituting (2-11) and (2-12)
)

into (2-9), taking the symmetric product over A with each M , and then
]

using the linearity of the symmetric product, we obtain the first

R

matrix equation. Similarly, substituting (2-11) and (2-12) into

» Sl
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(2-10), taking the symmetric product over B with each gm' and then
using the 1linearity of the symmetric nroduct, we obtain the second

matrix equation. The two matrix equations are

Y+ y™) T+ M0 T =722 -T2 (2-14)
(M1 V+ (2] % =¥ (2-15)

Here,

a a
Y3 = [ o, WA -1
RIS LR RS S NN S (2-16)
[ b = -’-\' P M) 2=1
D) = T 0D Lyaon (2-17)
A b
Tl =] < > ] -18)
(e} -1 -’ Et(%'),\"rqz\xrm (2-18)
[™1 = [ <5 , =%w )] (2-19)
' © —m ' —t =’ "B NBxNA
[2) =T <=3, €% )>.] (2-20)
-m —t -n" 3 NBxYB
feor &, (2-21)

- Em T =t TATNAYY

" J

+1ib A

= o 2-22
! [y s By g (2-22)
Vib L (5, wiP 2-2
v ¢ <—-nJ ' -tE >B]P~mx1 (2-23)
V=0v) (2-24)
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I = ‘In]VBx1 (2-25)

Thus (2-14) and (2-15) are the matrix equations to solve for the
coefficients (Vn,In) in (2-11) and (2-12). Ve call [Y?) and TY"] the
admittance matrices for regions a and h, respectively. [T] and f@]

-> e -2
I1a I1b

are the coupling matrices, [Z] the impedance matrix , and .

14
“’ib > -> .
and V' the source vectors. V and I are the unknown coefficient

vectors to be determined.

If the sources in region a were to radiate in the homogeneous
medium characterized by (ua.ea) and if the sources in region b were
to radiate in the homogeneous medium characterized by (ub,eb), the

fields in (2-16) - (2-20) would be given by

1 - | 1
i} (Hn) = -ngn - VQn 1=a,h (2-26)
Eb J 2 - b - b -
E (_“) Jwd - Vo (2-27)
b 1 h
H = -
_.(Qn) W Vx A (2-28)
-1
Eb(m ) =— Vx Fb (2-29)
- ™ € -
b
where
1
F* = ') 6(x ') 4s* - R
A

Ab - u JJ J (') 6(k., 1, ') as’ (2-31)
b L “-n - h — =
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i: 10
\ » 1 V.'Hn(r')
= - —=n=_ . ' - 22
o ” o, (‘(kl, 1, r') d8' 1l=a,b (2-32)
y A
3 7.3 (x")
b, . ‘n — ' '

¢, ff s G(k,, z, r') as (2-33)
JJ b
& ;
) 2 [}
3 -jk lr-r'l
B Gk, 1, 1') = yr Py l=a,b (2-34)

N l - -
“: kl = W El Ul l=a,b (2 35)

Here, W is the anpgular frequency. All fields are evaluated in a half

*
:; space with the aperture shorted.
3

4 If a Galerkin solution (i.e., M =N , J =J ) is used, we have

-m -m m -Mm

- 1 ~1
) (Y] = [¥)] 1=a,b (2-36)
5

: [2] = [Z] (2-37)
Ly
§ (3] = -[7] (2-38)
L

where ~ denotes the transpose of a matrix. This will save us some

o

computations. If regions a and b are filled with the same medium

,
;4 characterized by (U, €), we can remove the conducting plane and use
P
- image theory [7, Sec. 3-4] to evaluate the matrices in (2-16) -
54 (2-23). They beconme
Y
. [y2 b a

Y - - - A > -
o ) = () =2 [, e, 1, (2-39)
y
: p
b - ' L -
(e =D @ B30 20, Tyaens (2-40)
§
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1) =2 [ <3 E (M) 41
(1] [ 3 LB (M) ]NBxNA (2-41)
(2 = [ <2 B (3 & 3" %0 Jypons (2-42)
ia _ ylioa -
Bhaala@ 1 T (2-43)
?ib - iobh
1o (5.

2 [ty o 27 Jypge (2-44)
viv | [ <] , ri%Pgiod’s (2-45)

R T B “NBx!

Here, Et(gﬁ "i.n) and E%(gn , gfn) are the tangential fields due to

J i ' ! in ion a. H (M d E M

d  Plus its image J' located in region a -t(—n) an —t(ﬂ\) are the
ioa

tangential fields due to _l‘in 5—1: is the tangential field due to

(iia, _.'lia) 1% ana "% Lre the tangential fields due to (iib,

ALY —t
L] Py
M%), g% is the tangential field due to the image of (J1°, wiM).

All the fields are evalnated in the space with the conducting vplane

removed. They can he calculated by using (2-26) - (2-35) with

superscripts and subscripts (a,b) dropped, and J 1eolaced by (gﬂ,J'n).
. =
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-3 «— CONDUCTING PLANE
(APERTURE SHORTED)

Har € A
REGION o

(a)

CONDUCTING PLANE

~ Z

M= -M° Ko €p

REGION b

(b)

Fig. 2.2. Equivalence for the seneral problem . (a) TRquivalence for

region a. (b) Equivalence for region h.
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B Chapter 3
.
1S APPLICATION TO THE PROBLEM OF AN UNLOADED WIRF OF FINITE
' LENGTH BEHIND AN APRRTURF OF ARBITRARY SIZFE AND SHAPY
’a i}

~

-
2
B 3.1. Problem Specification
:
) In this chapter, the general moment method solution developed in
1y
S Chapter 2 is specialized for the problem of an unloaded wire of finite
%, length behind an aperture of arbhitrary size and shape. The problem

1)
ﬂg; configuration is shown in Fig. 3.1. The sapace is filled with
T
e loss-free homogeneous medium of vermeability y and permittivity ¢ . A L
‘ﬁl straight thin wire of radius !B and length L is located at y=d and
-Jl.v
:qﬁ points toward the z-direction. A plane wave is incident from region a
- at an angle (e°,¢°). For this excitation, we set the tangential
¥ impressed field at a point (x,0,z) in the aperture as
At

)]
3
L& ioa ioa ioa

2 H = (H + H u ) -1)
i i (H o+ U (3-1)
3?‘

.

:'.'
! where

- jk{xsin® cos¢ +zcosH )

oy pioa . (yloa .9 coso -Hioasin¢ Ve ° ° ° (3-2)

] x ] 0 o ¢ o}

|

COS¢ +z00s

2 n:oa = 'Hgoasineoejk(xsinen 0,*2¢030,) (3-3)
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Here, Hioa and Hioa are constants, and u and u_ are unit vectors in
6 -x -z
the x and the z directions of the rectangular coordinate system. Wo

impressed sources exist in region b.

An appropriate set of expansion functions and testing procedures
are needed to solve for the currents in the aperture and on the wire.
In this chapter and throughoutA the following chapters, a Galerkin
solution is wutilized and, for simplicity, the same medium is assumed
in regions a and b. Therefore, we only need to specify the expansion

functions and use (2-39) - (2-45) to evaluate the matrices.

3.2. Mapnetic Current Fxpansion Functions in the Aperture

In this section, we model the aperture by planar triangular
patching which has been used to model a surface in [9) - [13]. The
advantages of the triangular patching are : (1) +the ability to
conform closely to an arbitrarily shaped aperture, (2) the flexibility
of having greater densities on those portions of the aperture where
more resolution is desired, e.z., when the edge effect is concerned,
and (3) the scheme can be easily implemented on a computer. The

triangulaxr patch scheme for the aperture is explained as follows.

First, assume that a suitahle trianpulation is found to closely
approximate the aperture region. The trianpulation is defined by sets

of faces (patches), edpes, and nodes, such as shown in Fig. 3.2. We

number the nodes and edges and specify the orientations of edpes by
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;2& arrows (e.g., edge 1 is from node 3 to node 4). VWe next define the
. orientation of each face to be its normal direction, i.e., in the
e
-c} y-direction of Fig. 3.1. As shown in Fig. 3.3, the current reference
\éﬁ direction across an internal (non-boundary) edge n is defined to be
o the direction of the cross product of the edpe orientation and the
XN
‘ef' face orientation. The conjoired triangles associated with edge n are
iy + - +
i:? denoted by '1‘n and Tn’ with the current reference direction from Tn to
, .
D> n
b ":'
%-.‘
30 Next, we introduce local vposition vertors associated with edge n,

as shown in Fig. 3.4. Any point in triangle T; can he desienated by a

+
local position vectox_@n defined with respect to the free node (node

Sl Dull e e P

not on edge n) of T;. Similarly, any point in ™ can be designated
n

- + -
by § n° Yote that ﬁn is defined away from the free node of T;, and ﬁn

LY, is toward the free node of T;. 1 is the global position vector of a
LY
»
24 point in the aperture.
1
»
F‘f Now, we define the expansion functions in the aperture, which
"
gﬁ’ were originally proposed in [14]. For each internal edge n, the
—
e magnetic current expansion function is defined as
A
f$$ .
i 16 .
o, n:n r in T
", A - n
—— 2 n
N J 1 -
s§ fn(f) = 22 1 in 77 (3-4)
N - 2A n
'-;: n
‘ 5 0 elsewhere
’y \
s
y
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Here, 1n is the length of edge n, and A, and A are the areas of
v’k +*> -
* conjoined triangles Tn and Tn.
-
o
In the following, we discuss some properties of M defined in
g -
;: (3-4), and ensure that they are uniquely suited to be the magnetic
" current expansion functions in the aperture.
2
#
g (1) En has no component normal to the boundary edges (excluding the
conmon edge) of the conjoined triangles ot and T . Hence, no
d . n n
, - line chaiges exist along these boundary edges. In addition, the
N component of En normal to edge n is the constant 1 (see
_ Fig. 3.5) and is continuous across edee n. This implies that
#
» edge n is also free of line charge.
3
~
, (2) The surface magnetic charge density is defined as
.
: -
5 n = ——i
4 n -jw
4 { *1
y L r in 77
1 4 Juh
o] elsevhere (3-5)
1 \
i’ Therefore, the net charge in the conjoined triangles is zero.
)
]
!

b
i
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(3) The set of functions En defined for all the internal edges is
sufficient to represent the magnetic current anywhere in the
aperture. Any current in the aperture can be well approximated
by a superposition of these expansion functions. At any
boundary edge of the aperture, the normal component of magnetic
current must vanish, while the tangential component can bhe
represented by a linear combination of the expansion functions
associated with the +two internal edges of the pertinent
triangle. Therefore, we need not and should not define

expansion functions for the boundary edges.

Thus, the total number of expansion functions over A, YA in
(2-11), is equal to the total numher of internal edges of the
aperture. In addition, since the nommal component of Hn across edge n
is 1, Vn in (2-11) 1is interpreted as the normal component of the

magnetic current density crossing edge n.

3.3. FElectric Current Expansion Functions on the Wire

We make the following approximations for the current on the wiie :
(1) The curtent is assumed to flow only in the axial direction of
the wire, (2) the current is approximated hy a filament of current on
the axis of the wire and depends only on the axial length variable,
and (3) the boundary condition (2-10) is applied only to the axial

component of the electric field at the surface of the wire. For

-~
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Lﬂ simplicity, the wire is equally divided into WE subsections of 1length
R, ZGB. Pulse functions are used over each suhsection. The expansion
ANy
: ; functions for the current J on the wire are then defined as

q;
b \
J auP(z-z ) n=1,2,...,0B =X+, ¢zc¢k- (3-6)
-, “n “z n 2 p="=2 Oy .
i,

o
?{ 1 y 2 <z <2

' n- -~ n+

R P(z-z ) =
kN n

3
§§ 0 , elsewhere (3-7)
4 a

}é where zn ’ zn, and zn+ are the z-coordinates of the starting point,
e -

z midpoint, and termination point of the nth subsection. The subsections
~
;" are enumerated from z = <L/2 *qu to I/2 “oge Note that by (3-6) the
Ay current is ensured to be zero at the ends of the wire.
3.

iﬁ

i 3.4. Matrix Evaluation

N

"y

a2 (A) Evaluation of Admittance Matrix in_:.zzl

iy
vy

5? According to the definition, the admittance matrix [Ya+yb] is
. independent of excitations applied to the system and can be evaluated

¢

'j as if the wize were not present. Therefore the matrix is the same as
N

that evaluated in [13]. We summarize the evaluation as follows.

o
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Substituting (2-26), (2-30), (2-32), (3-4), and (3-5) into

(2-39), we have

AC+. c+ AC=
2Jw1m[gm F()+ 8

e

- 41 [e () -0 (7))

where

ety 1 ' et '
o (5 -,J-M ng(z') 6Ck, 1%, 1°) a5
T +T
nn

+
ﬁgi and 3;; are, respectively, the local and pglobal position

(3-8)

(3-9)

(3-10)

vectors

of the centroids of Ti. The integrals are approximated by sampling

the integrands at the centroids in (3-8).
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+ +
To evaluate F (1S ) and & (&), we proceed face by face for each
n n —m

triangle. As shown in Fip. 3.6, T is an observation triangle and Tq
P

a source triangle. Nodes of Tq are designated by 1, 2, and 3%, and

lengths of edges of Tq are 11, 12, and 13. The local position vectors

of a source point in Tq, EL, b, and §q, divide Tq into three subareas

4 A2, and A3' The pglobal position vectors of the source point and
the three nodes of T are r°', 54, 52, and 13, 1espectively. e now

A

define area coordinates (&,n,z) as

A
E =_A._2.- (3'11)
q
A
n=—2 (3-12)
A
q
A
1 "I; =1 -F-n (3-13)

where A is the area of T . The relationships among the area

coordinates and position vectors are
Ql =: (L. = ) i=1,2,3 (3-14)
+ + -15
51? nr (3-15)

In (3-14), the positive sign is used if the current reference
direction of edge i is away from T , and the negative sign is used if
q

the current reference direction is towari T . "ote, for simplicity,
q

superscripts + of

+
and T are dropped.
q

%
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Using the area coordinates, we can transform any surface integral

over T into a double line integral by the following formuls,

T =0 =0

q

1
H f£(r')ds’ = 2AqJ J f((1-£4’1)_r_1+€£2+n5_3)d€m (3-16)
n

Therefore, the electric vector potential Efq and magnetic scalar

potential ®PY at the centroid r€
1 -0

source triangle T can be evaluated as follows.

By (3-4), (3-9), and (3-t1) - (3-16), we

potential

T
q

= + - Pq - pPq - rq
#liel (1 T s (15 DT (1 -2, )T

where

n=0 £=0

of trianple 7T

due to edge i of

have the vector

i=1 12'3 (3‘1 7)

(3-18)
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Sy
4
p! 1 19n
Pq -19)
_ I, = J ] £6(k,R,)d&dn (3-1¢
::L 12 n=g &a0 'p
A
”»
3 n
]&L r'
) e - J J ne(k,® )d&dn (3-20)
3 n=0 £=0 '
. - jkR
. ok, R ) = = (3-21)
“y ' P 47R
P
';5,,
En c
I Rp I}_p -(1-g-n, - £1, - n_r_3| (3-22)
i
Fquations (3-18) - (3-20) are evaluated in Appendix A. Similarly, by
' (3-5) and (3-10) - (3-16), we have the scalar potentinal
N
,"
) Pq ._1_ f . v [o] *)ag"’
oFd -1 lfmgy 6k, 1%, 145
q

Y

+1
-..._i. JJ G(k, l;' L.) as'

Juwud
T

, a

-

7
é b NELL TR (3-23)
k jwu i 1<y -
Ve Again, if the current reference direction of edpe i is away from Tq,
)

. the positive sign in (3-17) and the negative sign in (3-23) are used.
A If the direction is toward Tq, the nepative sisn in (3-17) and the

positive sign in (3-23) are used. Note that (3-17) and (3-23) are
M defined only for the edge which is not a bhoundary edge of the

g aperture. If edge i is a boundary edge, qu -‘qu = 0.
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Finally, F () and @ () in (3-9) and (3-10) can be obtained
g T -m n-m
;; from fﬁq and ¢?q in (3-17) and (3-23) by transferring the local index
A
1 i (i =1, 2, 3) to its corresponding glohal index n (n = 1, 2,...,
LN aCt . .
» NA). Sinilarly, the quantity 1 B0~ in (3-8) can be cvaluated by using
e face to face procedure and local index. The evaluation of the
él admi ttance matrix is now complete.
1
]
b L,
3¢ (B) Fvaluation of Impedance Matrix Lzl
x
»)
The tanpential electric field at an observation point along the
, surface of the wire due to the axial current gn at (0,4,2') plus its
',
$
> image gfn=1£n at (0,-d,2') can be obtained by (2-27), (2-31), (2-33),
and (2-34). It is
\
A
N
P . -jkR -jkR'
A ] = =-JWU . e - [ ]
z Ez(gn'i n) an JJn(z ) R R' )4z
X B
X
< dJ (2') -jkR  -jkR'
y L1 3 202 @ R ) g
3 4TjwE 9z dz' R R'
o B
W
. n=1,2,...,UB (3-24)
v
’ Here,
2 2 2
; Re fz-2020 i (3-25)
2
2
R* = J}z -2, (24) (3-26)
3
3,
</
J
T B A R A A RIS
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R are the distances from the observation point to the source point and
to the image of the source point, respectively. Substituting (3-6)
)
and (3-24) into (2-42) and using [8, Eq. (4-20)], we obtain the

impedance matrix elements

YA = jNUAl Al [ w(z 12 o1 ) -¢(Z » 7% 92d)]
mn m n = m n B = m n

+ —l;[w(z vZ2 ,r ) =Yz ,z ,2d)
= m+ n+ B m+ n+
- Eﬁzm+,zn-,rB) + !sz+,zn-,2d)

= w(z 12 I ) + w(z 2 92d) (3‘27)
- n+ - n+

+y9(z ,z ,r ) -¥z ,z ,2d)] m, n=1,2,...,"B
m-""n n=""n-

Al
§ VA +—ﬂ. 2 2
- n 2 ~Jk (Zm-z') +0
' - 1 - ' ”
i(zm’ zn’ p) 4."A1 J ')2 ] dz (3"-8)
n Al (zm‘Z +0
7z -0
n 2
,F has been evaluated in [15].
N T g e S e e e S e
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(C) Evaluation of Coupling Matrices [T] and [T]

The tangential magnetic field at a point (x,0,2) in the aperture

due to a z- directed current in on the wire at y=d plus its image In

is

H({(J, J' =24 (J
—t(m’ - n) x(—n) X
2d
mana NERE'S (3-29)
x +d
Substitution of (3-4) and (3-29) into (2-40) gives
+
A%ty H J A=
PPN Byu Moy 2 Bua, (L) :
mn m ,* > - , ds
2 2
Am ot x +d Am - X2+d2
m
act c+ te- c-
x_ Hy(d 5 1°7) xSTHp(d; 2°7)
~ dlm ju} ¢__x_1- m LM ¢.~..P.. m 1 (3-30)
' c+\2 2 ﬂ[’ ce\2 2
( m )< +d (xn Y<4q

H ict ct "Ci
ere, n and x, are the x-components of position vectors D_m and

ct .
1.+ Tespectively. H¢(%;

field due to J at the centroid 1.
-n “m

rct)

I is the ¢-component of the magnetic

The magnetic field 4 (J ; % i
¢(—n' x ) due to in defined in (3-6) is

H¢(J.n3

Tl TRt |




3F W a0 B N A 4

a A ndas

Ja)2.42 " \ -3 x|
l

- + )e dz’
4T E::t'i.'z ’5 -I"3
Al
n
ct\2 2 iyt
. Aan(xm Yea [ Fr 1 o Jkrmn
4 2 + 3
(rﬁn) (Iﬁn)

where

'in . ﬁlg;ci)Z . dz . (z:t_ . )2

m n
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(3-31)

(3-32)

is the distance between the centroid associated with edge m of the

aperture and the midpoint of subsection n of the wire.

component of r°*. Subetituting (3-31) into (3-30), we obtain

+
T~ dlmAln ;c+[ Jk 1 le Jk!mn
mn ~ an m ( + )2 ( + )3
Tmn Tmn
-3k
N B S R P
L (- )3
mn mn

m=%,2,...,NA n=1,2,...,NB

z°* {8 the 2-
m

(3-33)

Since Galerkin's solution is used, [@] can be obtained hy [T] - o [T].
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4 (D) Evaluation of Source Vectors fia, fib, and V°
3
3 Since there is no excitation from 7region b of Fig. 3.%,
3,
(2-44) and (2-45) give
3
R +ib  >ib
M I'" =v =0 (3-34)
N
5
! Substitution of (3-1) - (3-4) into (2-43) gives
2
4,
ia 1 { A+ nioa 1 A= 108
= ——— .]{ S——— ] q
y Im lm[A" JJQm—t dS*A- [Jgnﬂ-t d]
! m o, m -
it T T
; m m
3
<1 [;'c+nioa<rc+) . §c+Hioa(Ic )
o mm x -m m z m
X ,
] + ¢C-pioa, c- ac=rioa, c- - _
f 20°H_ (lm ) + 2 (x,7) ] m=t,2,...,%A (3-35)
A Here
S" '
2 ioa;_c+ ioa i
) cty _ yloa
: Hx (lm ) = (Hg coseocos¢o H¢ sin¢o)
,jk(x:‘tsine cosd *z:fcose )
e ° ° (3-36)
ct ct
4 10a, ct ioa jk(xm 8in® cos¢ *z cosH )
; HPM2 =) = - Hg™%sing e ° ° ° (3-37)
g 5% ana 2% acCt ct
, m m are the g-components of gm' and _r_m » respectively.
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K2,
N By solving (2-14) and (2-15) with matrices evaluated above, we
R o1 can obtain the current distributions in the aperture and on the wire.
6>
il
“I
>
o 3.5. Numerical Results
o
Gty
3
N In this section, numerical results are presented for the magnetic
;. current distribution in the aperture and the electric current
s S
Yy distribution on the wire. WNumerical results for narrow slots are
%1 available in the 1literature for the problem considered in this
\ chapter. We therefore perform computations for a narrow slot backed
Jl
'ﬁ by an unloaded wire of finite length with plane wave incidence. As we
4 will see, our results agree very well with those in [5].
.7
+ The slot has length L and width W and is centered at (x ,0,0).
-4 a a c
Ny The wire has 1length L and radius IB and is located at y=d. A plane
O wave is normally incident with H;°8-1 ampere/meter. Figure 3.7 shows
W)
;5 the triangulation used for the slot, where NA, WNODE, WEDGE, and NFACE
\
'l
A are the numbers of unknowns, nodes, edges, and faces of the slot,
A respectively.
i
l;
3 For the case of La/)\ =0.5, wa/x =0.05, zB/x =0.001, and L
2 /}=0.5, Tig. 3.8 shows the comparison of our results for the total
[}
i: . x-directed mapgnetic current M in the slot with those in [51. Figure 1
-, 3.9 shows the comparison of the electric current I on the wire. They
f both have very good agreement. Figure 3.10 shows the electric current
4
] on the wire for the case of La/x =0.5, ¥ /A =0.05, X 0., Al\ =0.125,
‘ a
.
e
N
N
Iy
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IB /A=0.001, and L/ A=1.0. Fipure 3.1' shows the electric current on

e
1

the wire for the case of L / A=1.0, ¥ / A=N.05, x [/ A=0.25, 4/ X=0.25,
a n o

v: :14'-.“.
& & A8

3%

53/180.001, anle/A=1.O. Aeain, our resnults for these cases arree

very well with those in [5}. Here, A=1 neter is chosen as the

<% 4
PRV X

wavelength in the computation. 'ote, the opposite sisn of electric

-\ t‘..'

-

current on the wire in our results is Aune to the choice of a different

coordinate aystem from that in [5].
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Fig. 3.1. An unloaded wire of finite length behind an aperture.
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Fig. 3.2. Trianpulation examnle.

EDGE ORIENTATION

» FACE ORIENTATION

(NORMAL TO THE FACE
POINTS OUT OF THE
PAPER)

CURRENT REFERENCE DIRECTION

Fig. 3.3. Relationship among face orientation, edpe orientation, and

current reference direction aciross edse n.
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a EDGE ORIENTATION
r i

O (ORIGIN OF THE GLOBAL COORDINATES)

+

Fig. 3.4. Local position vectors En and

N

associated with edge n, and

JO

global position vector r.

+

p and P~ at edge n.
-n —n

Fig. 3.5. Normal components of
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OBSERVATION TRIANGLE
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Fig. 3.6. Local and global position vectors, edges of source triangle

T, and areas A', A and A3 used in defining area
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Fig. 3.7. Triangulation of a slot centered at (x ,0,0) for NA=19,
c

NNODE=22, NFDGF=41, and NFACE=20.
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—— OUR RESULTS (NA=19, NB=9)
XA RESULTS IN [5]

Fig. 3.8. The total x-directed magnetic current in a slot backed hy an

unloaded wire of finite 1length with normal plane wave

incidence. La/l-O.S. Wa/k-0.0S. xc-O.,. d/A=0.25,

1,/A=0.00, L/}=0.5, and Hi°a

=1 ampere/meter. (X =1 meter)
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Fig. 3.9.

—— OUR RESULTS (NA=19, NB=9)
XA RESULTS IN [5]

The electric current on an unloaded wire of finite 1length
passing by a slot with normal pvlane wave incidence.
La/x-o.s, wa/k-o.os, xc-O., a/x=0.25, xB/x-o.on1, L/A=0.5,

and Hi°3-1 ampere /meter. (A =1 meter)
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]
; -0.5 -0.25 O o025 0.5 A

—— OUR RESULTS (NA=19, NB=19)
2 x A RESULTS IN [5]

'4; Fig. 3.10. The electric current on an unloaded wire of finite length

rod passing by a slot with normal plane wave incidence.

La/x-o.s, walk-o.os, xc-O., 4/ =0.125, zB/A-o.001, L/A=1.,0,

) and Hi°’

=1 ampere/meter. (X =1 meter)
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AHO

0.10+

}'5 Fig. 3.11.
1

L, G A At
PN W y

-0.05-

~—— OUR RESULTS (NA=19, NB=24)
xA RESULTS IN [5)

The electric current on an unloaded wire of finite length
passing by a slot with normal plane wave incidence.

L /A=1.0, W /A=0.05, x /A=0.25, 1/A=0,25, r_/x=0.001,
a a c B

L/A=1.0, and H1%8a1 ampere/meter. (A =1 meter)
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Chapter 4
P
fi APPLICATION TO THF PROBLEM OF AN INFINITELY LONG
WIRE BEHIND AN APERTURE OF ARRITRARY SIZF AND SHAPE
4.1. Problem Specification
t; In this chapter, the wire considered in Chapter 3 is extended to
o
an infinitely long wire. The geometry of the wire and an aperture of
arbitrary size and shape is shown in Fig. 4.1. The excitation is a
plane wave incident from region a of Fig. 4.1, and is defined in
(3-1). The expansion functions and the matrices developed in Chapter 3
are modified to include the effect of the infinitely long wire. For
3 this, two exponential wave functions, in addition to the pulse
J

functions, are added to the expansion functions on the wire. The !
objective is to obtain the current distributions in the aperture and

on the wire.

X 4.2. Expansion Functions

Since the aperture is arbitrarily sized and shaped, the expansion

functions for the aperture remain the same as those developed in

Chapter 3. It is noted that a transmission line without réflections
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is formed by the presence of the infinitely 1long wire and the
conducting plane. Therefore, the electric current on the wire
consists of ¢two outward traveling TEM currents plus evanescent
currents (higher order modes) existing in a finite region near the
aperture. We wuse pulse functions to represent the total current
(evanescent currents plus outward traveling TEM currents) in this
finite region. Ve use two exponential wave functions to represent the
outward traveling TEM currents outside the finite resion. This finite
region must be greater than the dimension of the aperture in the
z-direction. Therefore, the electric current exvansion functions on

the wire are

- jkz L -1
3, =ue ERERRS (4-1)
%1 - g_zp(z-zn) |z] i% , N=2,3,44.,NB=1 (4=-2)
g ~ 2ze.akz %< 2 <® (4-3)

Here, P is the pulse function defined in (3-7) and L is the length of
the finite region. Fach subsection in this finite region is of length
2aB. Note that in order to include the outward traveling TEM
currents, the indexes in (4-2) are slightly changed from those of

(3-6).
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A 4.3, MATRIX EVALUATION
X5 It is noted that the magnetic current expansion functions for the
i'3' aperture and the electric current expansion functions for the finite
«*
region of the wire are the same as those in Chapter 3. Therefore, the
:: corresponding elements of the matrices [Yaqb], 'fia, _fib, and Vib are
?J‘ identical to those in (3-8), (3-34), and (3-35). The elements zmn for
m,ne2,3, ..., NB-1 are defined in (3-27), while the elements Tmn -
: - Tnm form=1, 2,0, MAand n =2, 3, .¢., NB=1 are defined in
(3-33).
" We now evaluate the matrix elements Z associated with the
mn
outward traveling TEM currents on the wire. By (B-17) and (B-18), the
g-components of electric fields due to _{1 plus its image i"'-_q_‘ and
4
> J ' -
& L. plus its image J NB- iNB are
' ke L L -
.\ =Jk3 Jk(z+2 z+>  =jkr
A E(J ,3° - .8 [jk 2 - 2_] 0
z 1" —1 4dmjwe - ( -)? ( -)3
o o Io
o
X
R L L -
k) jk(z+2) Z+z =jkr
, - K - g . 2 5le 0 (4-4)
- e [ [
'y (r O) (r o)
L
-jkz __I: L
¥ B (5 0 ) a8 2[[k k(2 2) zi]ejkto
—NB'— NB 47iwe + ( *)2 ( ’)3
-1' 0 0 To
M
\‘ L '
X (2~ 3) z- 5_ =Jkr
LI 2 2le = 9} (4-5)
'y (') (')
. 0 0 0
]
q
q
. vhere
L]
!
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e s, J(z: Ly 2 (4-6)
a o 2 n
'l
el s J - L2 2
.',_ s (2% 5) + (24d) (4-7)
e
':&. However it is noted that the charge densities associated with gﬂ
o
ot
_:{f. and J_ are
1%
L

dJ . -jk=
X 1.3 Taredkz L 2 -
¥ Soas —-—-_jw[,)ke -8(z+ 3 ) 7] (4-8)
‘" Yyp . jkz 1, "0
el - —] - - = -

‘ Tnds -jn[ jke + 8(z 2)e ] (4-9)
fi‘ The z-components of electric fields due to point charges
o
i - -jkL; 2

1 [:§(2+L/2)e JkL/ 1/(-jw) plus their images are the terms involving
A -2 i\ - +\-2 + -

5 (Ié) ' (16) 3. (r'y) *y and (r'o) > in (4-4) and (4-5). To assure
SN
N the continuity of the total current on the wire, we first replace

W delta functions &(z+L/2) in (4-8) and (4-9) by pulse functions
j';' P(?:L/Z)/Alo over a small region Alq. Then we replace the Ez due to
: ﬂ* the point charges by the Ez due to these pulse functions. Alo is
3oy

chosen, for simplicity, to he equal to ZaB. Thus, (4-4) and {4-5)

becone

1S ’ -k + -
é‘ Ez(£1 ’i1) B 4'rr(ie (= - : ‘- ) Ez(P ) (4-10)

o . - =ke e I A (p (4=11
N Ez(im;'i NB) 4m0e ( . o+ )”'z(P ) \ )

R LT ST Y R S T A P I R A e T PP L PR e T R e e VAN T T e e T PERPL I PR
WA T PR G O L L N S e S '\"s"’ e St RS S O v, .
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Here,

ho '3"'2' ~JkR _-3kR’

T L
W E (P %) - 4w3weA1 az I P(a'y 50(8 R R’

)dz'

‘jkz- ~3ikr+ ~ikr't
- L8 < J P(2’ )(— j R N )dz' (4-12)

";.:- 4mj (L)EA].O 9z 't

is obtained from the second term of (3-24). R and R' are defined in

(3-25) and (3-26), and

< rt= Jzz 352 )Z*IB (4-13)
¥
b2 J(2+ -2')%4(2a)° (4-14)
;,, By (2-42), (4-1), (4-10), (4-12), (C-3), and (C-4), we have
R
¥ o~ JKL
Z,, " —5——[¢(o 0,r,) - ¥(0,0,2d)] (4-15)

where y is defined in (3-28). By (2-42), (4-3), (4-11), (4-12),

RN X

R s e v

(c-3), and (C-4), we have

g
LR
&

KA ITREN

T

Z_ =3z -
NB,NB ‘11 (4-16)

[

-

LN oL

By (2'42)' (4'3)0 (4'10)0 (4""2)o (C‘S)t and (C'G)o we obtain

2

? -

;' C— = ki [IE(L 0,r;) - WL,0,2d)]

ké' k |
' * Froet-Cilku,)+ci(iu’ )+ 30si(ku,)-S1(ku' )) ]} (4-17)
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where Ci and Si are defined in (C-7) and (C-8), and

u = L+ .|1,2+,f3 (4-18)

2
u'2 = L+ .|L2+(2d)2 (4-19)
By (2-42), (4-1), (4-11), (4-12), (C=5), and (C-6), we obtain

Z v/ -20
1,NB "NB,1 (4-20)

Substituting (4-2), (4-10), and (4-12) into (2-42), we have

L

2 L L
z =£ jk +2,0,r) - +2,0,2
ke (ka1 [y(z + 2,0,1) - Wz + 3,0,24)]

L L
*_lli(zm** E'O’IB) - _'l)_( zn++ '5,0,2d)
-9z +20,1) + Wz +2,0,20)) me2,3 NE-1  (4-21)
= M= 2' ’ B 2 % 2’ ) 9)90eey

Substitution of (4-2), (4-11), and (4-12) into (2-42) gives

L
- k3

e . L L
Zm,NB = waIJkAlm[!sz- E'O’IB) -ﬂsz- E,O,Zd)]

L L
- ﬂ(zm#- 300'13) + .‘E(zm+'3v012d)

B C %.o.zB)_ - Wz, - $,0,20))  me2,3,...,08-1  (4-22)

PRSI L ML A O P e e
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By (2-37), we have
Z =3 n=2,3, .00 ,NB=1 (4-23)
im mf
Z = 2 =2 eesy NB=? 4-24
NB,m - Zm,NB T 2rOrres (4-24)
The evaluation of the matrix [Z] is now complete.
A A
Finally, we evaluate Tml' Tm,NB' T'm, and TNB,m for m = {1, 2,

esey NA as follows.

Substitution of (B-%4) with zz-L/2 and J7=J into (3-30) gives

ik
a1 e 2 get 2tk

T X __M { m [1A.J§=_Z_====T]
1 4 +2 2 +2 2 +.L
m m (x0 )% (x; )%+a"+ (20 +3)

‘JkJEEC+)2+d2+(zc++ L)2 S
e m m 2 .

—_—
C=\2,32

(x ")“+d

[ ' 26 + L ] -jk J(X:-)z*dz*(z:-* %)2
1 - e
[ L2
m= 1, 2' ceey NA (4‘25)

vhere Q;t, x;i, and z;t are defined in (3-30) and (3-32).

+
Similarly, substituting (B-4) with 21-L/2 and J"=Jyo into (3-30),

we obtain
L
-Jk=
e 2 3z ,C*.L
T T —a { a [1+ m_2 ]
m,NB~ " 4m () 24q2 /ﬁ)ﬁ?‘""ﬁﬁ
m /) *d Jixg )7+d +(zm -5
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R R R At LR
° (x:.)2+d2
c- _ L . c=y2 2 , C= L\2
[1 + fmf "2 e-Jk kam )+ +(zm - 5) }

g ea% ey 3°

m=1, 2, «e., NA (4-26)

®  and T , form = 1,2,...,NA, can be obtained by (2-38).
m NB,m

By solving (2-14) and (2-15) with matrices evaluated above, we

can obtain the current distributions in the aperture and on the wire.

4.4. Numerical Results

In this section, numerical results for the magnetic current in
the aperture and the electric current on the wire are presented. To
ensure the validity of our formulation, we compare our numerical
results with those available in the literature for several examples.

Very good agreement is obtained.

The aperture of the first example is an electrically small
ellipse with major axis of length La-o.ozx and minor axis of length

Ua-0.00ZA. An infinitely long wire of radius rB-O.OOTX is located at

ioa_ _e-jkz/n

y=d, where d=0.15), 0.0}, or 0.05A. A plane wave with Hx

ampere/meter is incident from region a of Fig. 4.1. Hete,IT-/u7€. We
use two kinds of triangulations to model the aperture. Figure 4.2(a)
shows a triangulation with greater patch densities at the extremities

of both major and minor axes than in the center of the aperture.

“a®" -’ - "e® . O L N I A I T L L
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E:: Figure 4.2(b) shows the other triangulation which has greater patch
! density only at the extremities of the major axis. In both figures,
&ii NA, NNODE, NEDGE, and NFACE are the numbers of unkowns, nodes, edges,
R 3 and faces of +the aperture, respectively. About the triangulations,
_E; there are two things to be noticed. TFirst, to compensate for the loss
.jg in the total area, we should put the houndary nodes outside the
s

1 aperture so that we get the correct total aperture area. Second, to
take care of the edpe effent, we need a higher patch density around
the boundary than in the center. In Fig. 4.2, the boundary nodes are

placed on the boundary of an ellipse that is 1.01044 times larger than

: the actual one. That is, 21=1.01044 La. We compare our results from

; the two triangulations in Fip. 4.2 to illustrate the edge effect.
:: Tahble 4.1 shows that the amplitudes of outward traveling TEY currents
i, on the wire apgree very well with those obtained by using the formula
‘§ in [1]. It also shows that the 1esults (NA=41) using the
”j triangulation of Fig. 4.2(a) have hetter apgreement than those (NA=17)
B | using that of Fig. 4.2(b).
;
’ﬁ The second example is for an electrically small circular aperture
%ﬁ of 1adius rA=0.01A, backed by an infinitely 1lone wire of radius
?E IB-O.OO1A. The wire is at y=d=0.03%, 0.04), 0.05), or 0.06A. The
Ei excitation is a plane wave with Hi°a= —e'jkzh1 ampere /meter. Figure
- 4.3 shows the triangulation used for the circular aperture. There is
?& a higher patch density around the bhoundary than in the center. In
:: order to get the correct total aperture area, we use z=1.05391A as the
% radius for the triangulation. Table 4.2 shows that the amplitudes of
% the outward traveling TF¥ currents asree very well with those obtained
i by wusing the formula in [1]. TPor examples ' and 2, our results also
-

RN RS
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N apgree with those of the formulas in 2] and [37.

" The third example is for a narrow slot which has length L =0.5A
a

>

and width ¥ =0.05\ and is centered at (0,0,0). An infinitely long
a

&5

o
Fur
I o

wire of radius rB=O.OO1A is located at y=d=0.1A. A plane wave is

‘}ﬂ normally incident with Hi°a=1 ampere/meter. Fipure 3.7 shows the
}' triangulation used for the slot. Tiocures 4.4, 4.5, and 4.5k,
Py ; respectively, show that the total x-directed magnetic current M in the
Al slot and the real and imaginary parts of the electric current on the
200

,a wire agree very well with those in fd]. Fisures 4.5 and 4.6 show that

the evanescent current on the wire is concentrated in the region for

s, which |z|<0.25)  Beyond this 1resgion, the currents are two outward
[

< traveling TEM waves. Therefore, the choice of L=2.00 used in our
o

- calculation should he adequate.

o' 1

- Finally, we consider a circular aperture of radius rA=O.1k backeqd
'j by an infinitely 1long wire. The wire has radius IB=O.OO1A and is
" located at y=d=0.05\. The excitation is a plane wave with
[ )

5% Lioa -jkz . . . .
\' dx = - /N ampere/meter. Ve wuse the triangulation shown in
7; Fig. 4.3 for the aperture, where r=1.053qrA is the radius in the

patching. Figure 4.7 shows that the evanescent current on the wire

-

" drops to zero rapidly, and can be neglected heyond a small reeion of
-

I.'.

j z==0.25. to 0.25\. Note that both the evanescent current and the
, outward traveling TEM currents are discontinuous at z=0. The total
N
;{ current is continuous everywhere along the wire. Inis implies that
15

\z pulses must begin and end at z=0. The replacement of delta functions
‘;.

E by pulse functions in Section 4.3 has assured contimity of the total
33

f,; current on the wire. Fipure 4.8 shows the 1radial component of the
!

N

<'~‘
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magnetic current per unit length V crossing a circle of radius 5/6 r

in the aperture. %hen V is positive, the current flows away from the
center of the aperture. %hen V is negative, the current flows toward
the center. 1t is seen that V is antisymmetric about the z-axis

(6=0.). There is no availahle data to compare with for this example.

In Figs. 4.7 and 4.8, H;oa

(0) denotes Hioa at z=0.
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Fig. 4.1. An infinitely long wire behind an aperture.




A v WY e U N VS e Pa T Navan v e e W N T o T RN Ol el Adac R Aul ) A 2 A R I ‘_'.‘,-;,'-1
52
y 4
5 ! 5
"6 A
9 ,i x=0 I_._=9
ST AT SRR L ATl
L2941 112 4 21,1029,
N 11730
|
f\n
N
»
\ X +— —m—220
Y
[ |
. |
P I
A N 1,1
':.d N : 1 . (| : |
‘.»‘j iy v . toobg
LY ! | | | [ (] |
R Loty
Iy (a) L)
-{ ! | : v
» I I g
. (! | | bl "
bt | J | l | i it ! |
| { } 1 1 } i
3 Ly | I
I [ | i P LYy
£ N L ety
o Iy L
| ¥ | " (I
\ ] {
'
b5,
i
,r
<!
]
'1.' (b)
1‘::
Fig. 4.2. Trianpulations of an elliptical aperture. (a) NA=41,
s NINODE=28, NEDGE=61, and NFACR=34. (b) NA=17, NNODE=20,
)
3 NEDGE=37, and NFACE=18.
¥
3
&
& |

~

N i
T U R o S RN T E RIS ST AT LY NG T, P P I P TR TR P SIS T AT RGN N X
s 5y 3 S S L S AN R D T TR T, DOUN DR D D TN Y & e IR AR LN

L D)




'L

Yo,

(7

- g g YRV IELI Y -
st at A AL | Ay Ay 2, & ‘:—.—-‘L

“v: o

S LA P

2 2 20 2R DA

R A Y B Y

e A e ¢

&

by

Table 4.1.

an infinitely 1long wire passing

aperture.

yioa_

X

L /A=0.02,
a

W /A=0.002,
a

by a small elliptical

xB/A-o.oo1,

-ik :
-e” I %m ampere/meter. (A=1 meter)

/)

Our Solution

Solution of [1]%*

NA[NB L/

11/10'7

-7
INB/1O

1,/10

! Ing/ 107"

0.15

41162

«0.0091-j0.1457

-0.0086-30.1393

17162

-0.0086-~30.1391

~0.,0087=30.1391

-30.1554]-30.1474

0.10

4116211 .5

-0.0077-30.2358

-0.0072-3j0.2254

17)62

-0.0072-30.2251

=0.0072=30.2251

-30.25094-30.2380

0.05

41)62

<0.0078-30.5401

~0.0069-30.5162

17162

"’000072—‘]'0.5’ 53

-0.0072-30.5153

-30.5763

-j0.5476

* Nearly the same as the solutions by the formulas in [2] and [3].
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Amplitudes 11 and INB of outward traveling TEM currents on
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«2. Amplitudes I1 and INB of outward traveling TEM
currents on an infinitely 1loneg wire passing by a
small circular aperture. IKA'O-O1, rB/X-O.OO1, and

Hioa_ -e~Jkz / n, ampere/meter. (A=t meter)

a/x

Our Solution Solution of [1]

NA

6 6 6

. - - -6 s
NB|L/A 11/10 INB/10 11/10 INB/1O

0.03 |56

22]0.3]-0.0070-3j0.4943 |-0.0024-j0.1682] - j0.5427] - §0.1809

0.04 156

22{0.4]-0.0067-30.3498}-0.0009-30.1191|~j0.3803] - j0.1 267

0.05 |56

2210.5]1-0.0067=j0.26821-0.0003-j0.N929]-3j0.2895] -j0.N0965

0.06156

22]0.6}-0.0069-30.2163]-0.0007-30.0758 |- j0.232%] - j0.0774
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Fig. 4.4. ™e total x-directed magnetic current in a slot backed by
an infinitely lons wire foz'La/A-o.s, wa/k-o.os, xc-O.,
IE/X-0.001. d4/A=0.1, and normal plane wave incidence.

( A=1 meter)
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d Fig. 4.5. The real part of the current on an infinitely 1long wire

; passing by a slot for La'/)\-O.S, walk-o.os, xc-O.,

xB/A-O.OO1, d/A=0.1, and normal plane wave incidence.

' ( A=t meter)
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The imaginary part of the current on an infinitely long
wire vpassing by a slot for La/A-O.S, v /A-0.0S, x =0.,
' a c

xB/A-O.OO1, d/A=0.1, and normal plane wave incidence.

(A =1 meter)
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Fig. 4.7. The electric current on an infinitely long wire passing by
a circular aperture with plane wave incidence. IA/A=O.1,
d/»=0.05, IB/A-O.OO1, and “ioa. -e~3k%n amvere/meter. (a)
Real part of total current. (b) Imapinary part of total
current. (c) Real part of evanescent current. (d)

Imaginary part of evanescent current. (NA=S6, WNB=f2,

L/x*2., and )\=1 meter)
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Chapter 5

;{ﬁ APPLICATION TO THE PROBLEM OF AN ARSBITRARILY LOADED

WIRE BEHIND AN APERTURF OF ARBITRARY SIZE AND SHAPR

5.1. Problem Specification

In this chapter, the problem 1is generalized to that of an
arbitrarily loaded wire passing by an aperture with excitations coming
from either one or both sides of the conducting plane. Figure 5.t
shows the geometric confipuration of the prohlem to be consijdered. An
aperture-perforated infinite conducting plane of zero thickneas covers
the entire x~-z plane and separates repions a and h. In region a
(y < 0), the plane wave defined in (3-1) is incident at an angle (60,
¢°). In region b (y > 0), a z-directed thin wire of radius T is
terminated by loads ZL1 and ZL? at z = -Lw/2 and LW/Z, respectively,

and is parallel to the conducting plane at a distance of d. There are

i
2

The space is filled with a 1loss-free homogeneous medium of

TEM voltage sources V: and V_ applied across both ends of the wire.

KoY
H:% permeability py and permittivity e.
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The generalization is to include the reflection effect caused by
the terminations of the wire into the moment method solution developed
in Chapter 4. The objective is to find the current distributions in
the aperture and on the wire. We then evaluate the power transmitted
through the aperture. In addition, an equivalent circuit of the
aperture for the transmission line mode on the wire is obtained. The
derivation of such an equivalent circuit is detailed in Appendix D.
Utilizing the circuit and transmission line equations, currents and
voltages of the TEM mode along an arbitrarily loaded wire can be

calculated.

5.2. Solution Development

As in Chapter 4, the presence of the aperture excites two outward
traveling TEM currents plus evanescent current on the wire. In
addition, there are reflections of these currents due to the
terminations of the wire. The wire is assumed long enough that the
evanescent currents do not reach the terminations. Thus, the
reflections can be represented by two pure TEM current waves. The
situations at the terminations are shown in Pig. 5.2, vhere
(1 ejkgnz, NE® -Jk?!z) and (I"e Jkégz. ’e'Jk?gz) are the outward
traveling TEM currents and the pure TEM currents, respectively, and
the arrow denotes the direction of the propagation. The original
prodblem in Fig. 5.1 is then equivalent to that in Fig. 5.3, where the

loads and the voltage sources are replaced by the pure TEM currents
+ =jkz
e J u

»
J =1

- .= Jkz
and J a1 o u, traveling on an infinitely long wire.

>‘ ‘ v‘ l\"' .".l.fl.'.n'f s . [} . "‘ 'v. N ' *‘ ( ,’ y ‘.“.:-.'.""."-..'--.‘-..‘0 "o \ ‘1 .' .'j-.
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+ -
Here, I and I are related to the voltage sources, the loads, and the

outward traveling TEM currents. The relationships are derived as

follows.
Referring to Fig. 5.2, the voltages at the terminations are

- - j i -jkz _- jk
A A N S R AR AN e S S S B )

z (I+e-jkz - jkz+ -jkz kz

i + -jkz _~ J -jkz
o “Ie” +Iype ) = Vy ¢ 2 (T7eT T e TaIype ™) (5-2)

where Zo is the characteristic impedance of the transmission 1line

formed by the wire and the ground plane.
At 2=0, (5-1) and (5-2) become

2 (1" .17 -1,) = v, - Z,(I+ s T+ 1) (5-3)

0 1

+* - + -
ZO(I -1 + INB) =V, Zz(I + 1+ INB) (5-4)

referred to z=0, respectively. Z, and

are Vi and Vi
1 1

2 2

22 are the impedances ZL1 and ZL2 referred to z=0, respectively.

Here, VT and V

By solving (5-3) and (5-4) for I' and I-, we obtain

I* - 18 + C, I, + Iy (5=-5)
I" a1+ coI, + 031"8 (5-6)

--------
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vhere
T )V 1-T )V
I* ¢ r') 1:r1( ;2) 2 (5-7)
0 2zy(*-r,T,
T (V=1 )V (1= )V
1° FZ( T13 1 ( 2) 2 (5-8)
0 2z0(7-r1r2)
-]"1 (
c, = T, T 5-9)
Iy T,
L -2 %
c, T (5-%0)
-T
T ik
Ty T,
Z -2
1
r, =—t—=0 (5-12)
1 2*g
Z -2
r, =20 (5-13)
2 22,

Ty and 1. are the reflection coefficients at 220 apd o’,

+ -
respectively. Note, I and I are infinite only when Z,'Zz'“’or
2y=-2,
The second case (Z’--Zz) occurs when the resistance of one of the

« The first case (Z'-Za-“9 does not exist for the loaded wire.

loads is negative or the resistances of both loads are zero. However,

usually the 1loads are passive and the sources are lossy. Thus, this

case does not arise. Therefore, I+ and 1 are finite .
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By (5-5) and (5-6), we have

PGS 3F M S M £ (5-14)
PANETH RS 9 LA . l21< w (5-15)

where

_q(; I;e‘jkzﬂz f21¢ w (5-16)
3y = o eIty l2l< w (5-17)
o ¢ eI lz)< w (5-18)
S s T lzl¢ (5-19)
35 = C,ed%y, lzl< (5-20)
gﬁB = Csejkz lzl< o (5-21)

We now consider the problem in Fig. 5.3. There are an equivalent
magnetic current sheet M over the aperture, the pure TEM currents, and
an induced electric current J on the wire due to M. We can use the
same expansion functions for M and J as those in Chapter 4. The

formulations and matrices developed in Chapter 4 can also be utilized

with some modifications.
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T r.*
m’a.q,'
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We now apply the boundary conditions stated in Section 2.2 to the

L g

: ’.k'.‘r‘\*'rf'-s\n.‘
s » B R It
ot Soa A e e 3

problem. The first condition that the tangential £ is continuous at -
the aperture is assured by the magnetic current sheets M and -M over
the two siles of the aperture region. Due to the additional pure TEM

currents, the second condition, (2-9), becomes

.

-

e

n:(n)-nt(n)mb(.m NIt e I s MO

on A (5-22)

L

et ol s

Here,.g consists of two outward traveling TFM currents plus evanescent

current. The condition (2-10) remains the same because the tangential

L4845 ]

E from a pure TEM current vanishes on the wire.

Therefore, the matrices [Ya+yb], (2], [a], Tia, and ;ib remain

the same as those in Chapter 4 while [T] and Tib mast be modified.

JAET N B

Note that here [T] is defined in (2-18) or (2-40) with gﬂ replaced by

* .= + - >
J 4¢3 and 3 by Joedy sl and TP is defined as

o a

iv
m

- b, .+ -
x I qﬂ,n (._IO+._IO)>A (5-23)

Y Ve nov modify the [T] matrix. By (2-40) and (5-22), the modified |

matrix is the sum of the [T] due to g_(same [T] developed in Chapter

. 4) plus additional terms T2 and T° R R -
: mt m,NB due to J,, J,, QNB' and gﬂB,
s for m*1,2,...,NA. The additional terms are
M

M H (307,00, 00T)
m? = I A R R R EAE R (5-24)

-

LPCE AL LS PN "u"h\"\" N
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where J' and J._f are the images of gf and J* » Yespectively.

—NB

By [4, Eqs. (80), (83)] and (3-29), the tangential magnetic

tikz
u

field in the aperture due to a pure TFM current e on the wire is

+
de"sz

H = u (5-26)
By (5-t7), (5-18), (5-20), (5-21), and (5-26), we have
+ ' ") - - + -
ﬂt(g,‘._-_l_',.] 4'7) = 2(c HO + C H) (5-27)
ot o- - - + N

Substitution of (3-4), (5-27), and (5-28) into (5-24) and (5-25) gives
'

' T:1 - C1T; + czw; me=1, 2,..., NA (5-29)
a - - M- -
Tm.uB csz + c3'rm m=1,2,..., NA (5-30)
vhere
) . e
a3t O m o O
Tre BB e A
I n | (5-31)
mo2w (x: Y +q (x;,)2+d2

Q:*. x:i and z:t are defined in (3-30) and (3-32).

N PN
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By (3-4), (5-16), (5-19), and (5-23), the mth element of the
-)ib +

N source vector I'° que to J, and ga is

},

;,5 ib + - - + o

. o= It LT, m=1,2,...,NA (5-32)
4

;§§ The evaluation of the matrices is now complete. By solving
h (2-14) and (2-15) with the matrices evaluated above, the currents in
z; J

sﬁ the aperture and on the loaded wire can be obtained.

’;

The total current on the wire is

o A

s
X5, ARty

Fagihy (5-33)

o
e

Thus, the total TEM currents at z=0 and O+ are

- + -
1+C +C C + -
. Logw = (14042C)T, + (C2COTy, + Ty + T (5-34)
b ""j
(3
B + + - -
o ITEM - (C,*Ca)I' + (‘f02+03)INB + Io + IO (5-35)
Sj
' It is noteworthy to verify that the problem considered in Chapter
3
= 4 is a special case here. The infinitely long wire considered in
~
;' Chapter 4 is equivalent to a loaded wire with Z’.ZZ.ZO and V1-V2-0.
) :
}% Thus, (5-5) = (5-13) give I'a1 0. The current on the wire is then
- reduced to that of Chapter 4.
0.
o
:.O
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Pinally, for a loaded wire whose 1length is very short, the
solution developed here may not apply. For this case, the method of
Chapter 3 can be utilized. However, the pulse functions on the wire
must be extended to the terminations. 1In addition, the impedance
matrix [Z] must be modified by adding a diagonal matrix with loads as

its diagonal elements corresponding to the terminations.

5.3. Power Transmitted through the Aperture

In this section, we derive the power transmitted <through the
aperture into region a of Fig. S.! when the excitation is incident

from region b.

By [7, Eq.(1-57)], the complex power tranamitted through the

aperture into region a is

A
NA NA
*
--3 vv”u-ﬂa(n)ds
m “m = -n
m=1 n=1 A
NA NA
» a*

- z 2 vanY

m=1 n=9

IC A Al ol * i e ar i Ji ~ R A et g Rt
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- T (5-36)

vwhere " * " denotes complex conjugate. In (5-36), the vector identity
(AxB) « C = (CxA)*B, (2-t) with gﬁgy, (2-11), and (2-16) are used. The
time-average power Pt transmitted through the aperture is given by the

real part of P;.

5.4. Evaluation of an Equivalent Circuit

In this section, an equivalent circuit at z=0 of the aperture for
the transmission line mode on the wire is presented. For simplicity,
a plane wave incident from region a of Fig. 5.1 is the only
excitation. Using this circuit, we can obtain the TEM cufrents and

voltages on the wire.

The derivation of the equivalent circuit is detailed in Appendix
D. In Appendix D, the solution for the current on a wire with matched
loads (or infinitely long wire) is utilized to evaluate the impedances
and sources of the circuit. We therefore consider the wire as

infinitely long.

The general T network is shown in Fig. D.5. The impedances Z:.

Z;, and 22 defined in (D-21) - (D-23) depend on 2_, I, 1 f', and

3 o' "¢’ "Np’

§NB° Here, (I!'INB) and (11’INB) are the amplitudes of outward

trzaveling TEM currents in the -z and the +z directions on the wire

when the original incidence is replaced by TEM current excitations

.—jkzn’ and esz!z applied to the wire, respectively. The sources V:




T1

L) e e
o' e 20 Z3 1

and IKB are the amplitudes of outward traveling TEM currents in the -z

and V, in (D-24) and (D-25) depend on Z I,and I . 1

and the +z directions on the wire, respectively, when the excitation

is the original incident field.

If the aperture is symmetric about z=0 or is small, the network

in Fig. D.7 1is used. The impedances Z: and Z; and sources V? and V2

~

A
defined in (D-28) - (D=-31) depend on Zo' 1,1 I, and I"

+’ "NB' 1 B’

If the aperture induces symmetric outward traveling TEM currents

on the wire, the network in Fig. D.8 with impedance A in (D=32) and

A

e
source V in (D-33) is utilized. The network depends on 2 I and

o' "¢
I‘.

If the aperture induces antisymmetric outward traveling TEM

currents on the wire, the network in Fig. D.9 with impedance 28 in

(D-34) and source V® ipn (D-35) is used. The network depends on Zg»

A
I', and I‘.

To obtain the network, we first calculate the amplitudes of the

outward traveling TEM currents as follows.

N ~
~A ~

To calculate (It'INB)’ (It'INB)’ and (11'INB)' wve solve (2-14)

and (2-15) with the matrices [Yaoyb], (2], [7], and [f] evaluated in

-+* A
Chapter 4 and with vib.o for the current on the wire. For (Iﬁ'tNB)'

->

ia *iv + -
the source vectors I =0 and I defined in (5-32) with I,! and IO-O

a7 Tiv +
are used. For (I1JINB), tia,y and I1P defined in (5-32) with IO-O and

Sty e
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10-1 are used. For (I!'INB)' 118 yefined in (3-35) and‘iib-o are

used.

Next, we substitute these amplitudes and ZO into the expressions

for the sources and impedances of'the network.

5.5.Numerica1 Results

Numerical results for the current distributions in the aperture
and on the wire are presented in this section. Numerical results for
the power transmitted through the aperture are also given here. In
addition, we calculate the impedances and sources of the equivalent
ci;cuit. The TEM current on the wire is then computed from this

circuit and compared with that obtained from the solution of Section

5.2.

The first example is for a slot of width Ha-0.0SA and length La
varying from 0.2 to 1t.0A. A matched wire of radius rB-O.OOtA is
located at y=d=0.tA. A TEM voltage excitation with v1-2zo volts and
VZ-O is applied on the wire. Figure 5.4 shows that our solution for
the time-average power transmitted through the slot agrees very well
with that in [6]. It is seen that the maximum of the power occurs
when the length of the slot is about O0.460, which {is 4its resonant

length.
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Next, we consider a slot of length La-O.SX and width wa-o.osx
backed by a wire of radius IB-O.OO1A. The wire is located at various
positions from y=d=0.i\ to O.4A. A plane wave is nommally incident
from region a of Fig. 5.'. Figure 3.7 with xcao. is used for the

triangulation of the slot. Fipures 5.5 and 5.6 show the source and

impedance of the equivalent circuit {in Fig. D.R) of the transmission

line mode on the wire. Our solution agrees very well with that in

L [4]. From this circuit, we can also calculate the TEM current at z=0

ol on the wire, by terminating the two ports of the circuit with Z’ and
()

Ty ZZ' This is shown in Fig. 5.7. The TFM current at z=0 is equal to

the loop current I in Fig. 5.7. Tahle 5.1 gives the results for

d=0.1X and various 1loads. It shows that the results are (almost)
identical to those obtained by the solution in Section 5.2. They also

agree well with those in f6]. In addition, the results of the last

o «
7 0%

three cases show that the total TEM current at z=0 is unchanged if the

‘f?‘

sum of loads Z1 and 52 remains unchanged.
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Fig. 5.3. The equivalence of the problem in Fig. 5.1. Arrows denote

the propagation directions.
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Yig. 5.5. Equivalent source for the TEM mode at z#0 on an arbitrarily

loaded wire passing by a slot with nommal plane wave

incidence. L /X =0.5, W /A =0.05, 1, /A =0.001, and Hi“-s

ampere meter. (.1 meter)
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Equivalent impedance for the TEM mode at 220 on an

arbitrarily loaded wire passing by a slot with normal plane

wave incidence. La /) =0.5, Wa /A =0.05, Ty /X =0,00Y, and

Hioa_1 ampere/meter. (A= meter)
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s Fig. 5.7. The circuit used to calculate the TEM current at z=0 on a

wire terminated with loads Z‘ and 22 and passing by a slot.
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Table 5.t. Total TEM current at z=0 on a loaded wire passing by a

A
LA AP

slot with normal plane wave incidence. La/A--O.S,

Tae
ﬁ.l.l'
.

wa/x =0.05, a/\ =0.1, xB/x =0.001, and H W =t

e 8,

ampere/meter. () =1 meter, NA=19, NB=62, and Lw/X =1,5)

Reflections Solution of Calculated Solution
X j (5-34) or
39 T r, |(s-35) from Fig. 5.7 | in [6]
» 1 2

. .0 0 0 0 0

X 0.9 0 0.0287-30.0129}0.0287-3j0.0129]0.0264-30.0136

0.8182/0.8182/0.0287-30.012910.0287-j0.0129 {0.0264~j0.0136

N 0.8750)0.6667]0.0287-30.0129]0.0287-30.0129 }0.0264-30.0136

e R I A A O A A e S N, SN

PN

n,,-}h oy ‘H'.'- .
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Chapter 6

CONCLUSION

A moment method solution for the problem of electromagnetic
coupling between an aperture and a conducting body is developed. Both
the aperture and the conducting body are arbitrarily sized and shaped.
This method is ¢then implemented in specific cases whereby the
conducting body is a wire. The wire 1is finite-length unloaded,
infinitely 1long, or arbitrarily loaded. The aperture is modeled by
triangular patches, which can conform closely to any geometry and
permit greater patch densities on those portions where more resolution
is desired. Local position vectors are used as the expansion
functions in the aperture. There are two outward traveling TEM
currents and evanescent current on the infinitely 1long wire. The

evanescent current is found to exist in a small finite region near the

aperture. Numerical results show very good agreement with available

data in the literature.

Further work is recommended for more general proolems as follows.
First, consider the problem of a set of arbitrary apertures with a set
of parallel wires. Each wire can be finite-length unloaded,
infinitely 1long, or arbitrarily loaded and can be in different media.

One can use the rame expansion functions as those developed in this
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work for each aperture and each wire; The matrices in (2-14) and
(2-15) must be modified to include the coupling among apertures and
wires. In addition, different permeabilities and permittivities must
be included in the matrices. By solving (2-14) and (2-t5), the

currents in the apertures and on the wires can be obtained.

The problem of a set of arbitrary apertures with a set of
arbitrary conducting bodies can also be done. To solve this problem,
one can use the formulation developed in Chapter 2 and the matrix
equations (2-14) and (2-15). Triangular patching is recommended to
model apertures and conducting bodies. Local position vectors can be
used as expansion functions . The work may be complicated, but it can

be done without too much difficulty.

o
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o] APPENDIX A

g
a

AN

SURFACE INTEGRATIONS FOR FIELD PROBLEM

o -

In this appendix, we evaluate the following surface integrals:

T

PPVl A

1 1-N
A =jkR
I= j e = d&dn (A-1)
) N=0 E=0
N 1 ten
A -jkR
B = fe R dedn (a-2)
; nN=0 £=0
‘n
' 11
s A ne_'ij
é'(' L J J R &t dn (A-3)
n=0 £=0
o Here, R=|r-r'| is the distance between a source point at r' in

triangle T and an observation point at r. The area coordinates of

44

i

triangle T are £ and n defined in (3-11) and (3-12).

¥

i To avoid the singularity of these integrals at L-_r_'. we Trewrite
‘l

) (A-1) = (A<3) as

I3

o v o T

=JkR
I f j o~y =1a&dn + f J%d&dn (a-4)

——;::’rra 4. a

o
T

o
3

]

O
Y
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o
a

i}
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1 4-n -
r _=JkR
IE- [ J £ e - -1d€dn + j f .g.dgdn (A-5)
n=0 £=0 n=0 £=0
1 1N ] ’-n
] e JKR_, [ n
I f et LA f g % (4-6)
n=0 £=0 n=0 g£=0

The first terms of (A-4) - (A-6) can be approximated by using a .
seven-point Gaussian quadrature formula developed for a triangular

region [46]. The formula is

t 1=7n 7
J £ g(t,gmldedn 5 ¥ “iaig(bgimi) (A-7)
n=0 &=0 i=1

Here, g is the integrand, (gi,ni) is a point in triangle T, LA is the

weight, and ai is the coefficient. They are
( v,=0.5 121,2,.0.,7

a‘-0.225

a2.83.84-0'1323942

as-a6ta7-0.1259392

£,7n,=0.333333 (4-8)

£2N520,05971587

i _ Y AN I DAL ".-1‘4"
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af = _an =0.47014206
58 ™

wn =0, 26
Es n6 7974269

- & = -0.101286
EG E'7 5 n7 >

\

To evaluate the second terms of (A-4) - (A-6), we first introduce
some vectors and variahles as shown in Fig. A.t. O denotes the origin
of the global coordinates. p is the projection °f.£'f£ onto the plane
of the triangle T. The distance between the observation point and the
plane of the triangle T is d. The contour along the boundary of T
is defined as C, which is the sum of three straight lines C', CZ' and

C_. along the edges of the triangle. 54, 32, and 53 are the outward

3

unit vectors normal to each edge. Point P denotes the projection of

the observation point onto T. For edge i (i=t,2,3), P and P are
=i “oi

the vectors from point P to a point on Ci and to the projection of the
observation point onto line Ci, respectively. The unit vectors of f;

and re u and u . Point denotes the projection of int O
n Qbi 8 L 2ot oint Q de s projectio pPo

onto line ci. Variable 1i is the length measured from point Q ¢to a

point on C  and is in the direction of a unit vector u . This unit

i 11
vector is in the direction of the boundary contour of triangle T along

edge Ci. The end points of ci and the projection of the observation

+

point onto C1 are at 11-11, 11

, and 101, respectively.

We now evaluate the second term of (A-4), which can be written by

using (3-16) as
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- where Ao is the area of the triangle T. (A-9) has been evaluated in
o [+7) and is summarized as follows.

¢y

N

%Q We use the surface divergence theorem [18]

%

- H V +fdS = 56 foudl (A-10)
,).'_‘ s — - .
gg S c
to transform the integral in (A-9) into a line integral. In (A-10), S
;: is the area of integration, C the boundary, and u the unit outward
1 vector normal to C. It is found that a function
! lz-x'!

{* L P N -1t
N £(p) S=—u, (A-11)
'.'

“é
Y,

A satisfies

N
A
d In 1

- ' o - - -

3 v £(p) =d (A-12)
r

~A 8 s

AN

a

where u = is the unit vector in the p direction, and V's is the

p

e surface divergence with respect to the coordinates of If'
e
RO
;: By (A-11) and (A-12), we can evaluate (A-9) using the formula in
x (A-10). However, note that application of (A-10) requires the
;3 continuous differentiability of the integrand on the domain of
‘ v
E: integration, S. This is not the case when P is in S or on C.
¥y

Therefore, a region Te' defined as the intersection with T of an
c‘
,H} infinitesimal sphere with 7radius € <centered at P, is isolated for
) separate treatment. The boundary of Te is defined as ce' anda(r) is
il —
R

! vey - A, . B I IR Y L DN L W W LT T T PO N e S T
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' the angular extent of Ce about P. The region of T excluding T is
‘,. T-Te’ and the corresponding contour is defined as C-C.. Thus, (A-9)
P '

g is rewritten as

; - 1 ____di’__, + dS' -
I, = linm EX ” fr-r'| ” lg-g'l] (A-13)
By -

P e->0 T Tt-: T&:

j2h

The second integral in (A-%3) is

ped

Sy

3 lim a(r)(Jezmz- lal) = o (A-14)
iy €0

,, By (A-10) - (A-14), we have

- 1 v 'I-I.' .
I, umon” Vs'( 5 _u_p)dS

, €*0 T-T,
W il fx-r'
» = lim — J =—=—y .udl
¥ 2A° p =
, €20 C-C
3 e
5 \ 2.2
Y - lim — [ f__._ll“- l, w1 - J—-E *d e34]
: 2A P ==
o P

€0 c c
L o €
L
*,
\
: 1 le-x'|
B TR J b, oy t2yd1 = a(n)]al] (A-15)

i=1 C

s Here, o(x) can be written as

3 Al# Al-
; -1 i -1 i
i olr) = u_ ey (tan -tan ) (A-t6)
- | L 8oy sy Pod Poq

1w

- -;..\-'.. (;(-:‘{.- ;-..;‘- ... :'..-:!' ~...-'.‘~_-
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where + + :
Al = 171 i=1,2,3 (A-17)
i i oi

\$~_ This can be verified by the values of afr),

f 0, if P is exterior to triangle T.

2m, if P is interior to T.

oa(r)=¢ 7, if P is on C but not at a node of T. (A-18)

e Q. ,
i;;ﬁ i

b, \

if P is at node i with interior angle ui of T.

?.d When the source point in Fig. A.t is on line Ci, we have

oo 'I' ! 1 d2

e (A-19)
o% Di+d2 o';’,.!ozim?

6.
=21 u, (A-20)
g —poi —i

f}?! Epi.gi

2 2 2
2% - -1 -
3 oy = (o )%+ (1,71 ) (A-21)

By (A-19) - (A-21) and [19, Eqs. (200.0t), (387)], we have

20 ’ +
- . RYem
o J lr-z Ig d1 [1nfi

+
-1-1-1 L] 0 E i.u - i

i

2] WM A17)al
% .
1; [] + 'dl(tan-1 i 1 'd

- tan~! iy (A-22)

i oi o R P RS
3~: oi i oi i

P where
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Rf "J;§+(poi)2+(A1§)2 (A-23)

Substitution of (A-16) and (A-22) into (A-15) gives

. 3 [ R;+A1f
I ==t 7 u eul, infi i
1 2A L 001" 24' 00 Ro+A1"
1 1
i
, 0417 , 0 AL7
- 1d[(tan™ Bt 2 - tan” ——FE2—)]
4%4pgst1alRy ¥ +poy+lalr; (A-24)
In (A-24),
tanA-tanB
tan(A-B) = TTrark tars (A-25)
is used.

There are four things to be noted about (A-24): (1) when poi-o,
the 1n term vanishes, (2) when poi* 0, the arguments Ri+A1: of the 1n
term are positive, (3) when d=0, the tan~! terms vanish, and (4) when
d $0, the arguments of tan™! are finite (i.e., dz#pii*ldlﬂf > 0). In
addition, (A-24) can be applied to any surface with multiple edges.

If there are N edges, the summation index i is up to N.

Finally, we consider the second terms of (A-5) and (A-6). They
have been evaluated in [12, Appendix C] in terms of the value of I'

defined in (A-9) by using [19, Eqs. (380.011), (380.201)]. The

results are

R R
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4B(J -J )-2E(J_-J )-(2BC-ED)I
I I éédg dn = 1.2 32 4 ! (A-26)
4AB-E

AJ_ -ZE - - =
4A( 3 J4) (J1 32) (2AD Ec)I1

(A-27)

[ [

n=0 &=0

4AB-F°

where

A
>
]
~
1
~
N

Q
]

-2(z-1,)(z,-1,)

o
]

-2(z-z,) (1,71

E = 2(12-5ﬂ)-(;3-14)

F= |r=-r |2

L
(A-28)
Q5 - (2B-CeD-E)B+D+F+(24+C-D-E)JA+C+F
1 4(A+B-F)

o 4(A+C) (B+D+F) +4F(B-C-E)-(C+D+E)?

8(a+B-) /2

1n| 24(A+B-E) (B+D+F) +( 2B-C+D-E)
2J(A+B-E) (A+C+F) ~(2A+C~D-F)

2, [B(B+D+F)+2B+D
2,[BF+D

J = (2A+C=D=E)JA+C+F+(2B-C+D-E)/B+D+F
3 4(A+B-E)

2
3 = (2B+D)[BsDFF-DIF , 4BF-D",
2 4B 8BAB

\‘.\ " \.\ \-"‘. - .,. N -( "L -‘n‘:';\' -"\-"-'\q.\-:.'-;\! 4'-‘1 '"\
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. 4(A’C)(B+D+F)+4F(B-C-E)-(C+D+EL2
8(A+B-E)

1n] 2(A*B=E) (A+C+F)+(2+C-D-E) |
2, A+B~E) (B+D+F)~(2B-C+D-E)

2
J = ‘2A*CZ£+C+F—CJF + JAF-C in

2NA(A+C+F)+2A+C

i TP TR ."-'.'.‘."u".‘h‘.'l_.'J'_"-‘.'J‘.'ﬁ

24AF+C

4 4A sada
Here, L" 12, and _1_3 are defined in Fig. 3.6.

The evaluations of the integrals in (A-1)

complete.

92

- (A-3) are now
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OBSERVATION
POINT

SOURCE
POINT L

Pig. A.V. Geometrical quantities associated with an observation

point, a source point, and edges of source triangle T.
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3 APPENDIX B
g ELECTRIC AND MAGNETIC FIELDS DUE TO OUTWARD TRAVELING TEM CURRENTS
3
; Here, we derive fields due to two outward traveling TEM currents
% starting from z-zi and -zz and traveling to infinity in the z and the
: =g directions, respectively. The currents are defined as
£
b
K + -jkz
"" i - @ ‘“Z 0 i z‘ { g2 ™ (B"')
3
- Jkz -0 -
g Jd =e u, <z« z, <0 \ (B-2)
It
)
¥
i We first evaluate the $-component of the magnetic field due to J*
f at a point (p,¢,2z) as follows.
§
) a (I
Hyd") = - —=
i M 30
,} -jk(re+e’)
i L a—( dz'
4m 3p
o 21
; -sz "
q - o e 3 a (e‘Jk(I+z ))d " (B 3)
18 4" Fp } ¢ 2 -
0
3
! 'Jk=1 L
3 -.® - =Jko p "
' - 1im ! (-—5- - _S)Q-Jk(xoz )ag”
. r r
L+ O
K
‘ﬁ""‘iu\z“ “.',‘1” N Y o\ 7N - " pop " '-,.q f._-‘.'- ~.. \ e ‘. . ".-;';".-.r".-‘;a -,:J,_;_..:_.\. \-
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-,jkz1 ) -,jk(r+z") z =L
. - i liM[pe "
i 1(14-5 +z1-Z)
L z"=0
- ks, -k +1) -Skrg
- -k 4T lim[fv(r +L+z -3) e‘ + ]
1 L L 1 ro(to*z’-Z)
) -5k(1_+L) -jkr}
oe Jkz, {r ~l+z~24)e L (15*2-21)9 °
8 - lim =
47 2_(1. 2 T(e*)?2 2
Lo rL[rL (L z0z1) 1 ro[(ro) -(z-z') ]
e-jkz1 z-2, -jkr;
7o (1 + < e
o
Here,

r = 02+(z-z')2 -J;2+(z-z,-2")2

rL -,‘ p 0(;-51-11)2
r; 'Jp *(z-z,)z

(B-5) is used on the third step, and the relationship

xi - (L-s*z1)2 - (15)2 - (z-z')z -p?
and

I, =L+g-3z

Lo

-
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(B-4)

(B-5)

(B-6)

(B-7)

(B-8)

(B-9)

(B=10)
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are used on the last step.

Similarly, the ¢-component of the magnetic field due to J~ ean

be odtained as follows.

- anz(g_')
o) = -5
-z
1 2 3 e'jk(t -z.) [
™ -ﬁ- j 5-6( n dz
Jkz
2 <Jk(r +g"
.- am r'g?:( .!. =) )az" (B-11)
o r
vhere
" - -(z'*zz) (B-12)
r~ -J_pz_i(z-z')z -.I?+[-(z#zz)-z"]2 (B-13)

Comparing (B-11) with (B-3) and (B-13) with (B-5), we can obtain
-jkz2 -Jjkz

ﬁt(gf) by substituting e for e ' and -(z*zz) for (z-z’) into
(B=4). The field is
-Jkz -
2 z+z_  =jkr
H(J7) « 2 1- 0 _
¢(_) rom ( r(;)e (B-14)

vhere

0 -] 92+(m2)2 (B-15)
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The z-components of electric fields due to ff and gf are then

obtained by the equation

ot __ 3. -
Ez Jwep [Bp (pH¢)] (B-16)

Substituting (B-4) and (B-14), respectively, into (B-16), we obtain

-jkz . +
1k jk(z-z ) z-z, =jkr
EUW') e o[+ 4 11e O (B-17)
z dnjwe " _* 2 *35
ro (IO) (ro)
-jkz . -
2 jk  jk(zez) z4z__ -jkr
") @ [—- 2. - 2 0 B-
Ez(-‘z ) 4w jwe [I(.) (I'O-)Z (15)318 ( '8)

......




MJ‘;AY § A

et

A i

b
F

T

vy

X

3

3

A g P

2
:
M

T
ol
%

i sa i r L et o r gt b g oSN oS W N M.y W .o _ W jm m v, ™o "a—0 .y

98

APPENDIX C

DERIVATIONS OF INTEGRAL FORMULATIONS USED IN CHAPTER 4

The integral formulations used in Chapter 4 are listed as follows

and proved later in this appendix.

)
_L-Jk( 224 (°+3) i - j sljk(.]zz+9§-z) .
0 g +0 —0 Jz +3
- -01(ko)-.1[-g- -Si(kp)] (c-1)
a 4]
J _l.;,k(.l?.p?. ) S LI
dg = J ds
2 +p g +P
0 -8
- Ci(ku1)-Ci(ko)-d[si(ku*)-Si(kO)] (c-2)
-a

r‘-Jk(.l(z-a) +DE+ e) . -J _!-jk( R“Q)Z‘.pz -z)d
Jo-a%e? Je0%e P

- e-dk.!-Ci(kp)_J[% ’Si(kp)]} (0’3)
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A'{T;Z o - -a=-z"' +02
& -weay | (et et T e s
) & Ja-a-z ) 092
_‘Z"-' a Alo
5 -
ity 2 2
~jkJ(z+a=-2')
. << J 03“;;'3'{J P(z")% 2 2p dz' Jdz
N z . Jam-z') +p
N - 0
3 .
| z =481 "% (0,0,0)+ ska1ge ™ *f-c1(kp)-3[F ~Siko) I (c-4)
-a
> / I‘” ﬂ(m*z)d j oo ‘z"’)z“’z")d
E Y 2 = 2z
_ m . J (z-a)2+p2
,  - e-"ka{-c1(ku2)+3[51(ku2)- Ly} (c-5)
R - s
v 'jk! o;.e-Jk (z#a-z')2+p2 "
iy e al I P(z") =5 dz dz
% 92 Hva-z') +p
H Yo
2 .
f - sza[.f': e i
ﬁ - J e asls [ P(z*) I( .)2 > dz’ ldz
3 - S m el e
5 0
b7, ® =4nAl e "'kalp_(Za,o.p)qkAloeJ"‘{-c1(ku2)+3[8i(ku2)- 12]} (C-6)
i Here,
¥ Ci(x) = I £22¢4 (c-7)
i :

,
-----
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x
° Si(x) = j M (c-8)
4 u
e 0
ll‘ = ao'la +p (C'g)
;, u, = 2a+,,'(2a)z+p! (c-10)
A .
» -3kl 2, -2')0e0?
L} 23 '

¥ (2,,0,p) -—-&—J P(z") )dz (c-11)
1 4T o l(z _z')2‘p2
: 1
‘:E
Y P is a pulse function over a very small region Alo, and p> O.
s We now start to prove (C-t). Letting
y 2
T N (c-12)
i
s Wwe have
i du = k(_ﬁ’m Ydz (C~13)
b l'?‘ 2
3 z +p
7
]
# Substitution of (C-12) and (C-13) into the left-hand side of (C-1)
: gives
Y
!
. 5 o o kp

o~ Ju
J du = I cosu,s, _ 4f I simug  _ I simu 4, )
u u u u
kp kp (o] (4]
= ~Ci(kp) - J[% - si(ko)]

. Thus, (C-1) is proved.
k)




101

R AL
[T o xR

The left-hand side of (C-2) can be rewritten as

: F‘L-Jk(«‘zzm *Z)d [we-jkdz +0 ’Z)d (c-14)
z - — z -
* J J z +p J 'Jz *o

a

(0]
’? By (C-12) and (C-13), we have
b * -jk(‘Jzzmzm) * =

I-ﬁf dz = f‘-’—o—s-'ildu-j[ Js’_’i’l‘du

u u

. zZ 0
> a ku 0
e ku1
< - J s:.lr:u 1]
> 0
P .
= - Cilku,) = J[T - Si(ku,)] (c-15)
3
é Using (C-1), (C-14), and (C-15), we obtain the right-hand side of
.&'7 (C-Z).
e Replacing z by z'+a in the left-hand side of (C-3) and using
A
(c-t), we obtain the right-hand side of (C-3).
b
s The left-hand side of (C-4) is equal to

” | [e-dkz J e-JkJ(z-a-z') +02d ] w
A ¢ - z .
; ..I(z-a-z') +p§

Alo gmg

v ® e 3k ez )2e

Z + jk J e J " —-:;”2"‘ dz'dz
& J(z-a-z' ) +p

" 2 0

- The first term equals

&

‘1
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Approximating the integral with respect to z' in the second term by

the product of Al_ and the integrand at z'=0, and then using (C-3), we

o
have the second term equal to

IS

3kt e™IK8 ey (kp)-3lF -s1(k0) ]}

We thus complete the derivation of (C-4).

Fodro "

Replacing z by z'-a in the left-hand side of (C-5) and using
:""
2 (C-t) and (C-2) with a replaced by 2a, we obtain the right-hand side
% of (C-5).
3
, .
. Finally, using the same procedures as those in deriving (C-4) and
:9 (C-5), we obtain (C=6).
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» APPENDIX D

2*{ EQUIVALENT CIRCUIT OF THE APERTURE

2 FOR THE TRANSMISSION LINE MODE ON A LOADED WIRE

In this appendix, we derive formulations for an equivalent

Ltk

circuit of the aperture for the transmission line mode at z=0 on a

wire. The wire is in the z-direction, terminated with arbitrary

Lo
s

;~ loads, and parallel to an aperture-perforated infinite conducting
plane. The aperture is arbitrarily sized and shaped and is centered

at 2z=0. Incident fields come from either one or both sides of the

L

conducting plane. This circuit can be utilized to calculate the TEM

LY

currents and voltages on the wire.

"
o
R

It is known that an equivalent circuit of a wire passing by an

Pt N
| IS GO

aperture is a two-port network as shown in Fig. D.!'. The parameters

[Ze] depend only on the geometry of the problem. They can be obtained

PN

by 7removing the incident fields from the system and applying

]

;3 mathematically arbitrary excitations to the transmission 1line formed

i by the wire and the conducting plane. The sources V: and V® can be
obtained from the incident fields and [2°]. In order to find the

Ex equivalent circuit, the solution for the current on an infinitely long

:: wire (or a matched wire with +the characteristic impedance Zo) is

%2 needed. Therefore, we now consider the wire as infinitely long.

1e

T A T A




(A) Network Parameters [2°)

To obtain the elements of [ze], we use the definitions

e e .
- )
“ Z“ 3'0%212 (D-1)

v = 28 i

e .
s " Py 1y 2 4, (0-2)

where 11, 12, v1. and v2 are port currents and voltages at port 1

- +*
(2=07) and port 2 (z=0 ), respectively, with reference directions

shown in Fig. D.2.

To represent an excitation, we mathematically apply a TEM current

szu

wave I’e' to the transmission line. ! is an arbitrary constant.

This excitation will induce an equivalent magnetic current sheet in

—

the aperture. The magnetic current sheet then excites two outward

k= and I e'jkzu traveling on both
NB -z

semi-infinite halves of the wire . It also excites evanescent current

traveling TEM currents’ i'e

on the wire in the vicinity of the aperture. Figure D.3 shows the
propagation directions of the excitation and the outward traveling TEM

currents.

Combining Figs. D.2 and D.3, we obtain port currents 31 and 32

and port voltages 91 and ?2. They are

(D-3)

o

IR, e,

ey
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~ + A

i, - (I « INB) (D-4)
~ +
v, - zo(x - i') (D-5)
v, - zo(x‘ . 1yp) (D-6)

Here, 20-601n(26/rB) is the characteristic impedance of the
transmission 1line, d is the distance of the wire to the conducting
plane, and IB is the radius of the wire. Since [Ze] is independent of
the excitation, (D-1) and (D-2) hold for the port currents and

voltages defined in (D-3) - (D-6). That is,

A - e A e
Ve T Tt z1232 (2-7)

9, =204

e A
2 " Tyl * 2500, y (0-8)

To solve for [Ze], two more equations relating the port currents
and voltages to [2°] are needed, in addition to (D-7) and (D-8). One

can apply a TEM current excitation I'ejk?ny to the wire. Again, the

R
aperture excites two outward traveling currents I1e'jkz

A

INBQ-Jk%BZ traveling on both semi-infinite halves of the wire, as

shown in Fig. D.4. The port currents and voltages for this case can

and

be obtained by combining Figs. D.2 and D.4, giving

A

& - A
1, =1 1, (n-9)

e % e " A" AR B" e a'a"

PR N R P R Y

[ JOR [ I A T TR - o et e » X T
Wt NG % QAR T T Jath, Ty " Ty Lt T P AP W OOMARES Q1 ¢




X gid o S E R St A > ol b C . AT ANREL TATI T T AR T NaBAEARATY

155
[}
t
[)

106

e 2 a e B
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(el el
1
]
~
4
[]
+
- »
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(D-10)

SN

oL’
<»
-
[ ]
&
o
~
[
]
+
—»
~—r

(D=1t)

A oy 2

ot

2
By
<»
[ ]
3
~~
-
[)
)
St

(D-12)

s p
s o a i

P

Similar to (D-7) and (D-8), we have a pair of equations relating these

x port currents and voltages to [Ze]. They are
P4
P
5
N 2 e A e A
; v, o0 i e 2f1, (D-43)
uds
A Y] A A R
Y e A e
s ¥, =255, * Il _ (D-14)
q,l

H
e

o

22 . - -

N For simplicity, I and I are chosen to be the constant *. Thus,
!

A (D-3) - (D-14) give

'1 e 2 -I\ -~ . .
s Zgy = LOST (414 (01 ) (141 ) ]F (D-15)
] e - 2 .

. z$2 2(!¢11)F (D=15)
\3

A9

‘ﬁj o n

A Zy, ® 2(”INB)F (D-17)
ai X .

v, A A A A

Y ) e ™ - 4

; z, [(1+1gp) (141)+ (141 ) (1-1, ) IF (D-18)
A

o vwhere

»

. ..-.s o .‘:.‘v.\;.‘- \-.\n u...--\q - "q‘\.v\ ’
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F- : 0 n (D-19)
(142101 NB)-(Hfma)(ng)

By the reciprocity theorem [7, Sec. 3-8], we have

e _ ,€
Z'2 ZZ’ (p-20)

The network is then equivalent to a T network as shown in

Fig. D.5, vwhere the impedances are, as obtained by using (D-15) -
(p-20),

e = € - e = -A #A - - 42

2y = 2y -2y, = [O-1) (8 )-(1-F ) (141 ) ]F (p-21)
e o 78 . o Y

22 z12 z2' 2(1+INB)F (D-22)
e - e - e - 1 '-2 - +A -2

z} 23, z% [(1+1’)(1 INB) (1 INB)(‘I 11)]F (D-23)

e e
(B) Sources !+ and !2

If both ports of Fig. D.5 are terminated with matched loads, as

shown in Fig. D.6, the network corresponds to our original problem.
The original incident fields induce two outward traveling TEM currents

I1e3k’f!z and I"Be'kagz on the wire. The locp currents 11 and 12 in

Pig. D.6 are equal to I, and -INB' respectively. Thua, Fig. D.6 gives

. ‘\.'. |

‘‘‘‘‘‘
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the sources,
o - @, »0 ‘e D-24)
v§ - (z()¢z1¢zz)110721'“3 (
e e, & -7° D=2
v - (zo+z2¢z.5)1“13 21, (D-25)

Note that Z:, Z;, Z;, V:, and V; are proportional to ZO. Hence, they

can be normalized by ZO' The equivalent network is now obtained.

If the aperture is symmetric about z=O or is small, then

' D-26
1 NB ( )

f = I D=2
i (p=-27)

By (D-2%) - (D-27), the network is reduced to the symmetric T

network shown in Fig. D.7 where the impedances and sources are

-(i1+i )z

AR NB QO (D-28)

2+3)* Ty
2(1+1_ )z

z; - R4 Se] (D-29)
(f,-fyg) (28 +E0)

s . _ 8,78 8

v, (20'41’22)11’221N3 (D-30)

s . 8,08 78

Vy = (2y020420)1 201, (p-31)
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For the case when the outward traveling TEM currents are
A A
- - I 8 in (D- finit
symmetric about z=0 (I' INB' I,T NB), Z2 n (D-29) is infinite and
the equivalent network in Fig. D.7 can be reduced to that in Fig. D.8

with the impedance and source defined as

-2f1z

A (p-32)
101‘

Ve . -I'(zzo + 2% (D-33)

They agree with those in [4] where the symmetric case was considered.
An example of this case is a narrow slot whose axis is perpendicular
to the wire. This is expected because the magnetic current in the
slot is equivalent to a superposition of magnetic dipoles which

produce symmetric currents on the wire.

For the case when the outward traveling TFM currents are

~ Fal
antisymmetric about z=0 (11--IVB' 11--INB)' Z: in (D=28) vanishes and
the network in Fig. D.7 is reduced to that in Fie. D.9, where the

impedance and the source are

. (1-?1)2
2% e —1-0 (p-34)
211
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An example of this case is a small loop aperture. The magnetic
current in the aperture is equivalent to an electric dipole which
points normal to the wire and produces antisymmetric currents on the

wire.
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j Fig. D.5. An equivalent T network.
¥,
¢
: \ 71 .
: i) L ie
? Zo Z, Zo
y

Fig. D.6. Equivalent circuit for the calculation of V: and V;.
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Fig. D.7. An equivalent symmetric T network for the case when the

aperture is symmetric about z=0 or is small.

v.
| + - e
Oz
! :
o— L0
| |
2=0" z2=0*

Fig. D.8. Equivalent circuit for the case when the aperture induces

symmetric outward traveling TEM currents on the wize.
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Fig. D.9, Equivalent circuit for the case when the aperture induces

antisymmetric outward traveling TEM currents on the wire.
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